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Dynamics of Faceted Grain Boundary Grooves
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The dynamics of dislocation-free crystal facets is examined in the context of
grain boundary grooves at the junction between two crystallites of a solid and
the liquid phase. The geometry and thermal conditions of grain boundary
grooves allow a detailed analysis of facet morphology during solidification in
terms of the nucleation and spreading rates of elementary crystal planes. Obser-
vations on the freezing of water in a two-dimensional cell reveal several dynami-
cal features which are treated by the theory. Additional observations provide
indications for the stiffness and premelting of grain boundaries.

KEY WORDS: Nucleation; surface free energy; facets; grain boundaries;
crystal growth.

1. INTRODUCTION

The interface between a polycrystal and its melt liquid is indented by
grooves at the triple junctions between two grains and the liquid. Under
isothermal conditions the depth and shape of a groove are determined by
the relations between the three interfacial coefficients. The shape is
modified by the imposition of a temperature gradient,"*? an effect which
forms the basis for a technique of measuring the solid-liquid interfacial
energy.®* Typical grooves have smoothly rounded sides emerging from
sharp clefts, but abrupt changes of slope can result from anisotropy of the
crystal-melt surface tension.”) An extreme case of fully faceted grain
boundary grooves has been observed in ice-water interfaces.® In this paper
we extend the work on faceted grooves to a study of their dynamics, and
show how the rates of nucleation and spreading of elementary layers of the
crystal are reflected in changes of shape and size of the grooves.
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The theory of crystal growth describes the temperature dependence of
the growth of singular surfaces. Singular surfaces are those for which the
surface free energy as a function of orientation has a pointed minimum.
Such surfaces can spread parallel to the crystal plane as a continuous
function of temperature, but growth in the normal direction requires super-
cooling in order to nucleate new crystal planes.”) The original formulation
assumed that nucleation is necessary only for sharp interfaces, and that dif-
fuse interfaces could grow in the normal direction without supercooling.
John Cahn® elaborated the theory to treat diffuse and non-singular sur-
faces, and showed that even diffuse surfaces require a finite driving force for
growth normal to their planes. In a subsequent paper Cahn, Hillig and
Sears'® extended the theory and applied it to experimental results on a
number of materials, including ice.®

In the present work we adapt the theory to treat faceted grain boundary
grooves, and show how the shape and size of the grooves are systematically
related to the rate of nucleation and spreading of individual layers. The
analysis is applied to experiments on the freezing of water in a two-dimen-
sional cell.

2. TYPICAL GRAIN BOUNDARY GROOVES

Grain boundary grooves at a solid—melt interface are analogous to the
meniscus of a liquid that wets the wall of a vessel. The liquid rises to a cer-
tain height L to reduce the surface energy by an amount proportional to
AEL, where AE is the difference between the surface energies of the wall
when dry and wet. The rise is opposed by gravitational energy. In the case
of a solid—melt interface, the groove is caused by the difference between the
solid-liquid interfacial energy and the grain boundary energy between the
two crystallites, 4y. In place of gravitational energy, the depth is opposed
by the free energy difference between the crystal and the supercooled liquid
within the groove. Typical grooves have rounded faces and depth given by

L=(4yT,/qVT)"? (1)

where T, is the melting temperature, ¢ is the latent heat of fusion per unit
mass and VT is the gradient within the liquid filling the groove.

Hardy™® studied grain boundary grooves in ice to determine the inter-
facial energy of the ice-water interface. Wilen and Dash(® recently studied
grain boundary grooves at an ice-water interface in a radial, two-dimen-
sional geometry. They found that most of the grooves were of typical
rounded shape, and had depths consistent with estimates based on Eq. (1).
However, a fraction were much deeper, with straight sides, such as
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Fig. 1. Schematic of a faceted groove.

illustrated in Fig. 1. In this paper we study the dynamical changes of
faceted grooves in terms of the nucleation of elementary crystal layers.

3. ORIGIN AND DYNAMICS OF FACETED GROOVES

Faceted grooves result from certain textures of crystal grains at a
solid-liquid interface, where the orientations of singular crystal surfaces are
tangent to the curved faces of a normal grain boundary groove. In such a
groove the singular facets can elongate continuously with temperature
parallel to the surface, but they cannot advance in the direction normal to
the surface until a portion of their surface is supercooled to the nucleation
temperature. When a temperature gradient is applied to the groove, causing
the overall interface to advance, the groove deepens, with spreading faces
of singular facets, but their normal growth is pinned until the groove depth
is sufficient to lower the cleft temperature to the critical value. When this
occurs new layers are nucleated at the cleft, where the grain boundary
makes contact with the edge of the facet. As new layers are created the
groove can advance with the interface, as long as the continued nucleation
and spreading of the layers can keep pace with the interface. The general
features of a faceted groove are shown in Fig. 1.

Nucleation is most rapid in the cleft, where the temperature is lowest,
and monolayers created there spread outward toward the interface. At low
freezing rates each layer can spread completely across the groove before the
next layer is nucleated, so that the surface never has more than one incom-
plete layer. At higher freezing rates the surface has several steps, so that the
surface is not perfectly parallel to a principal direction. The groove shape
evolves smoothly, from fully single-faceted sides, to a combination of
shorter facets and curved sections.

The evolution is analyzed in terms of the model illustrated in Fig. 1.
Ice fills the half space at x <0 (except for the groove), while water extends
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through x> 0. In steady state conditions the boundary at 7, proceeds at
constant speed V, in the +x direction, under the impetus of the uniform
temperature gradients VI'_ (x<0) and VT, (x>0). In this regime the
groove shape is predicated on the assumption that the time 7, for a layer
to spread parallel to its surface is short compared to the average time 7,
to nucleate a new layer, so that each step crosses the surface completely
before the next layer is nucleated.

The faceted groove translates with the advancing interface by the
nucleation of the layers on each side of the groove. The nucleation time is
related to the speed V, of the bulk interface and the growth rate normal
to the facet V, by:

V,sin 0=V,=h/z, (2)

where / is the thickness of an elementary layer and @ is the inclination of
the facet with respect to the x direction.

We consider two cases for the nucleation frequency in this geometry.
According to classical nucleation theory®!%!D the nucleation rate J
depends exponentially on the activation energy of a critical-sized pillbox
with free energy AG*:

J=1/t,=Aexp[ —A4G*/k,T];  AG*=nl*T/nq(T,—T.) (3)

where 1 is the line tension of the edge between a layer of solid and liquid,
n is the two-dimensional density, ¢ is the latent heat of fusion per unit
mass, T, and T, are the temperatures at the bulk phase boundary and at
the cleft, and the prefactor A is the initial growth rate of a critical nucleus.?

For the temperature gradients under consideration, we ignore the
curvature of the isotherms within the cleft and assume a constant linear
temperature gradient along the facet, G=cos @ VT _ so that the tem-
perature is written as 7(z) = T, — Gz, where the z coordinate is parallel to
the facet plane with the origin located where the facet intersects the bulk
interface at 7,. The maximum undercooling is at the cleft, where 7(L) =
T.. The nucleation frequency 1/z,, of two-dimensional islands of mono-
molecular height varies with temperature and hence position along the
facet. The probability of nucleation thus varies according to

p(z)=Aexp[ —n2?/kynq(T,—T(z))] (4)

3 We note here that in the general theory of nucleation, the prefactor is a quantity of con-
siderable difficulty to measure and to describe theoretically even when invoking rather gross
assumptions. Experiments with dislocation free Ga crystals indicate that A is proportional
to (T,— T,)™, where M depends on the facet (see e.g., Pennington!?)). However, Hillig\!®)
finds little evidence for such a dependence on basal plane facets of ice. Therefore, we treat
it as a constant.
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and therefore V', depends on the length averaged probability distribution
along the facet;

1 1

L A rL
T I

where ¢ =ni?/k,ngG. A change of variable y = L/z leads to the solution
V,=hd {exp( —¢/L) —ZE(c/L)} (6)

where E(y) is the exponential integral. Under the assumption that nuclea-
tion only occurs at one temperature 7., the rate depends only on the first
term of Eq. (6). At this stage we can understand how the overall growth
rate V, and the groove depth D=L cos 0 are related. In Fig. 2 we plot
V,sin 0 as a function of the groove depth for both cases described by
Eq. (6). The undercooling and hence nucleation rate at constant gradient
must increase with groove depth which must result in an increase in the
overall growth rate within this type of model. Note the more rapid rise in
growth rate with groove depth in the case where the spatial variation in the
nucleation temperature is considered.

The speed of advance of the interface at T, is governed by the
gradients in the ice and water, which control the dissipation of latent heat
from the boundary. The net heat flux balance per unit area across the inter-
face is

piqVe=(k;VT_—k,VT,) (7)
Growth Rate V¢
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Fig. 2. The growth rate V,sin0=V, as a function of the groove depth for both cases
described by Eq. (6). The upper curve assumes that nucleation occurs only at the cleft of the
groove, hence is a pure exponential. The lower curve allows for the extension of nucleation
probability over a finite distance above the cleft, as given by Eq. (6). Note the more rapid rise
in growth rate with groove depth in the case where the spatial variation in the nucleation tem-
perature is considered.
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where p; is the density of ice, and k; and k,, are the thermal conductivities
of ice and water, respectively. The depth D of the groove can be related to
the temperature gradient and the speed of the interface. Since the tem-
perature at the cleft 7.=T7,— D VT_=T,— GL, we can express the super-
cooling in terms of the speed by Eq. (7):

T,—T.=(D/k)(p;gVe+k,VT,) (8)

Combining (8) with (2) and (6) we can relate the overall motion to the
depth of the groove in (a) the case where the spatial dependence of the
nucleation probability is considered and (b) the case where nucleation
occurs at one temperature. In the latter case we find

V,=(Ah/sin 0) exp[ —C/DV,] (9)

wherein we have taken advantage of the fact that in the experiments under
consideration here p,qV,>k, VT, and C=cGk,/p;,q. Equation (9)
shows that at finite speed D depends on V, transcendentally, but a simple
approximation can be obtained by talking the logarithm of Eq. (6): since
In V, is slowly varying, we obtain an approximate relation between groove
depth, temperature gradient in the water, and interface speed:

DV, = const. (10)

4. GROOVES AT MODERATE FREEZING RATES

In the previous section we assume that each layer is completed before
the next layer is nucleated, so that the orientation of the groove surface is
parallel to the principal crystal plane. We now consider the changes when
the slow growth condition no longer holds.

When the nucleation time is shorter than the time for a layer to com-
plete, new layers are successively nucleated on top of uncompleted layers,
so that the surface is crossed by a number of steps. The inclination of the
surface relative to the limiting V,=0 orientation, i.e. groove angle 0, is
given by the ratio of normal and parallel speeds of the interface. The nor-
mal speed V,is simply related to the nucleation time and the temperature
by Egs. 2 and 3; however, the speed of growth of a layer along the groove
is not simply related to 7,. Consider a layer edge momentarily at an inter-
mediate position z along the facet. The edge moves at a speed controlled
by the dissipation of latent heat into the adjacent ice and water, which is
proportional to the local temperature difference 7, — 7(z). Therefore the
growth drive decreases as the edge nears the 7, boundary, and the speed
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slows. Hence, the orientation of the surface varies along the depth of the
groove; geometrical analysis yields the change in angle

A0(z) =tan~'[ V,/V ()] (11)

Thus the surface develops a rounded profile, increasingly rounded near the
top of the groove. The theoretical problem of the growth rate belongs to
a class of “Stefan problems” dealing with non-steady phase boundary
motion in transient thermal fields.!*» Analytic solutions have been
obtained for a wide range of problems in one and two dimensions'* but
the specific geometry encountered here has not been addressed.

5. EXPERIMENTAL OBSERVATIONS

Experiments were performed in a vertically oriented Hele-Shaw type
cell composed of a pair of transparent 75 mm long by 25 mm wide by
I mm thick single crystal sapphire windows that are separated by a
0.76 mm thick epoxy-fiberglass composite frame of slightly longer dimen-
sion. (The dimensions of the actual cell volume are 70 mm x 20 mm X
0.76 mm.) Individually controlled thermoelectric coolers in thermal contact
with the upper and lower 15 mm long by 25 mm wide ends of the windows
provide temperature control. Thermistors inserted through the frame edge
measure temperatures at two positions near the top and the bottom of the
cell, and hypodermic tubes inserted through top and bottom edges of the
frame provide liquid and vacuum pump connections. At room temperature
only 90% of the cell is filled with deionized, degassed water with the
remaining 10% kept empty to provide for the expansion of the contents
during freezing and at low pressure to maintain the water in a degassed
state. The cell and its thermoelectric coolers are mounted on a temperature
controlled heat sink and enclosed in a transparent, dry nitrogen purged
chamber that allows viewing of the central 45 mm long by 20 mm wide sec-
tion of the cell from the front and the rear.

Visual observations are made externally through the front of the
chamber with a long working distance video microscope, and recorded on
videotape in either real time or time lapse modes. Two zoom lenses provide
a continuously adjustable field of view of 1.4 mm to the entire visible por-
tion of the cell with resolutions of 6 um at the highest magnification (accord-
ing to the manufacturer and calculated using the standard Rayleigh’s
criterion) to 70 um when the entire visible portion of the cell spans the field
(limited by the spatial frequency of the 640 x 480 CCD array of the video
camera). The cell is illuminated externally through the rear of the chamber
with either a 100 W tungsten lamp or a 20 W halogen lamp as the source,
depending upon which of two illumination systems is chosen.



1318 Dash et al.

The two illumination systems available are lambertian and auto-
collimator types, and both employ infrared filters to minimize the heat load
into the cell. A lambertian type of system, which is a common approach in
many experimental investigations, is one in which the emitted or reflected
power per unit area of source is the same regardless of direction, and
incoherent radiation from any diffuse reflector or scattering surface may be
adequately described as lambertian. The lambertian system used here con-
sists of a 100 mm long by 75 mm wide white, diffuse screen just behind the
cell that is illumimated by the halogen lamp, and hence every point in the
visible portion of the cell is uniformly illuminated with a cone of light
having an angular radius of about 22 degrees. By contrast an auto-
collimator type of system is one in which a point or small extended,
incoherent source is imaged at infinity and so the light at any plane short
of infinity is uniform in intensity but highly directional. The auto-
collimator type system used here consists of the tungsten lamp, a ground
glass diffuser, an iris diaphragm, a 25 mm diameter, 25 mm focal length
plano-convex lens, a 25 mm diameter, a 100 mm focal length plano-convex
lens, and a front surface gold mirror. The iris simultaneously controls the
intensity and the angular diameter of the cone of light illuminating each
point in the visible part of the cell. The minimum acceptable intensity with
the current video camera and a 100 W tungsten lamp corresponds to a
light cone angular diameter of less than one half of one degree. With either
illumination system, a pair of rotatable, linear polarizing filters, one
between the microscope lens and the chamber called the analyzer and the
other between the chamber and the illuminator called the polarizer,
provide control of the polarization directions of the light that passes
through the cell and the light collected by the microscope.

The use of two polarizering filters to investigate a birefringent material
such as ice is called polarimetry, and it is used here primarily show the
polycrystalline nature of the ice produced within the cell. Birefringence,
which means two polarization-dependent refractive indexes, causes inter-
ference colors to appear in the light transmitted through the ice and vary
in hue as either filter is rotated wherever the crystallographic c-axis of the
ice is not parallel to the direction of propagation. (The birefringence of the
sapphire windows does not affect the video images because their c-axes are
within 1 degree of their surface normals and thus effectively parallel to the
imaging system axis.) Where ice grains overlap the range of colors selected
by the analyzer becomes very complicated, and, where the ice does not yet
fill the space between the windows, bands of similar color act as indicators
of uniform thickness.

With the lambertian illumination system, polarimetry must be used in
order to see any of the polycrystalline fabric of the ice in the cell, and even



Dynamics of Faceted Grain Boundary Grooves 1319

then, because the birefringence in ice is small, only those grains whose
c-axis direction differs significantly from that of the imaging system axis
produce significant color. Regardless of the colors of the grains, the bound-
ary regions between the grains are invisible with polarimetry unless they
overlap with respect to the imaging system axis. This is because the tiny
volume between the grains, whether wet or dry, does not significantly affect
the polarizations or path lengths of the light transmitted through it and
therefore produces no change in color. Where grains overlap, the regions
of overlap are only visible by virtue of the proper path lengths within
the crystallographic orientations of the two grains forming the boundary.
As for the interaction between the grain boundaries and the lambertian
illumination system alone, the grain boundaries remain invisible, regardless
of orientation. The reason is that the lambertian illumination is diffuse and
the thin interfaces between transparent regions of similar refractive index
scatter as much light into the imaging system as they do out of it, which
results in no net change in image contrast. The primary advantage of the
lambertian system is that it can uniformly illuminate the entire visible por-
tion of the cell at one time.

In contrast, the auto-collimator type system can only illuminate about
an 8 mm diameter section of the cell at one time, but its advantage is that
polarimetry is not required to see the polycrystalline fabric of the ice.
A vast majority of the grain boundaries are highly visible, regardless of
their orientation and the crystallographic orientation of the grains that
form them. This is a direct consequence of the very small angular distribu-
tion of the light incident on each point in the field of view. The scattering,
or refractive, behaviors of the grain boundaries are no different than when
the lambertian system is used, but in this situation more light is scattered
out of the imaging system than scattered into it, resulting in a dramatic
enhancement in image contrast. In addition to grain boundaries, the
visibility of many other features that subtly scatter light, such as the edges
of facets, voids, and dislocations, is also enhanced. Polarimetry, where it
produces interference color, helps distinguish between true grain boun-
daries and dislocations because of the enhancment in color contrast that
results from a significant reduction in stray white light from adjacent
regions of the source. The net result of combining polarimetry with the
auto-collimator illumination system has revealed a wealth of detail within
the ice and at the ice-water interface in this cell, during steady temperature
conditions as well as during growth or melting.

The course of freezing in several runs was recorded on video tape and
subsequently studied in detail. The initiation of freezing was followed by
rapid growth of a thin film of ice on the lower region of the cooled window.
The ice developed needle-like structure and grew as feathery dendrites, and
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then evolved to a more oriented structure, with a fairly smooth ice-water
interface oriented normal to the direction of advance, and grain boundaries
parallel to the temperature gradient. The grooves at the intersection of two
grains and the water interface were mostly of the normal curved variety, as
described by Eq. (1), but there were also one or more large faceted grooves
such as sketched in Fig. 1 and as pictured in Fig. 3. Typical grooves were
appreciably asymmetric, with angles 30° < <45°. As freezing progressed
the grooves usually translated with constant shape and orientation along

Fig. 3. Photo of an experimental giant faceted grain boundary. Size can be judged by the
scale of the rectangular image which is 4.60 mm x 3.46 mm. Ice is growing upward and due to
the higher thermal conductivity of the saphire cell windows, there is a deviation from the
ideality of the schematic in Fig. 1. We observe “two sheets” each adjacent to the sapphire
windows but simply connected by an overall concave region between them. Hence, the “top”
giant facet exposes a V shaped region of supercooled water adjacent to the “bottom” sheet
which we observe through the groove on the top sheet. The mean ice/water interface on both
sheets is the fine dark horizontal line along which T=T, and where the numerous classical
grain boundary grooves on either side terminate.
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the direction of the temperature gradient. A record of the trajectory
remained as a grain boundary. There were occasional short jogs in the tra-
jectory, but the track usually continued close to the gradient direction for
the entire length of the cell. The size of the grooves varied with freezing
speed and gradients; the largest being nearly 3 mm deep, as seen in Fig. 3.

6. DISCUSSION

The most striking aspect of crystalline material is its shape. Although
equilibrium and growth shapes can be described using thermodynamical
and statistical mechanical concepts, a complete description of evolving
crystals is challenging and active research area, and one in which John
Cahn has made many important contributions. Studies of ice growth have
helped to improve the understanding of the general processes of nucleation
and growth of crystals. The particular advantages of transparency and con-
venient temperature range, together with its common occurrence and the
variety of natural phenomena, combine to give ice a unique role as a test
substance. The morphology of ice crystallization is a distinguishing feature
in the different textures of ice occurring in the natural environment, e.g. in
frost figures, frozen lakes, glaciers, and sea ice. Many studies have
explained the textures in terms of the properties of the material under
special conditions, (1% 15-18)

To put into context what we have described here, it is helpful to con-
trast it with the more commonly studied growth of single crystals, which
may take convex shapes or have regions of concavity. Convex single
crystals tend to grow in anisotropic forms.!*2% Concavities are generally
not present on an equilibrium shape, because they increase the chemical
potential of the material relative to that of the bulk. However, concavity
resulting from instabilities can occur during growth, wherein two regions of
a surface advance at a rate that is greater than a region between them. The
concavity may persist and thereby characterize the growth form; a common
example is that of the snowflake. However, as we have shown here, con-
cavity arises naturally when two or more single crystals grow together.
A complex series of competitive phenomena influence the overall growth
morphology, and nowhere is this more evident and impressive than in
natural ice formations, where polycrystallinity is insured. Hence, the pre-
sent work suggests that the anisotropic growth of polycrystalline seeds,
often found in nature, will hold new suprises that can be fruitfully explored
using the techniques brought to bear on the study of single crystals.
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